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Abstract 

In this paper we investigate the limits on beam intensity in low 

energy proton synchrotrons due to the instability of the beam enve- 

lope. This instability has been previously examined in the context 

of space charge dominated ion beams, in particular for inertial con- 

finement fusion applications. We generalize the formalism of beam 

envelope evolution to include effects found in circular accelerators, i.e. 

curvature focusing and momentum dispersion. Several example lat- 

tices are analyzed to determine intensity limits imposed by onset of 

envelope instability; it is found that the instability can occur without 

depressing the phase advance below 90 degrees per cell. 



Introduction 

The intensity limit for operation of low energy proton synchrotrons is 
often determined by the space charge tune shift[l], which can drive individual 
particle tunes from the operating point onto a significant machine resonance. 
In this way a relatively small tune shift ( usually a few percent) can cause the 
emittance of a synchrotron beam to grow significantly. Experimentally, this 
effect manifests itself by a linear asymptotic growth of the emittance with 
peak beam current. This type of behavior has been observed in experimental 
studies of the Fermilab Booster[2]. 

In contrast to scenario described above, linear transport allows much 
higher intensity beams to propagate without degradation of the beam emit- 
tance. Space-charge tune shifts which are nearly as large as the bare (zero- 
intensity) tune can be tolerated given proper conditions in linear transport 
channels, as the beam travels much shorter distances in general, and does 
not encounter the periodic resonance-driving defects found in a circular ma- 
chine. The limits of stable beam propagation in a linear focusing channel 
have been demonstrated experimentally by Tiefenback, et al. [3] at LBL. It 
was found that as long as the bare phase advance per cell a,~ did not exceed 
approximately 90 degrees, the beam emittance was stable up to very high 
intensities. At phase advances above 90 degrees, however, it was verified that 
instability of the beam envelope caused emittance growth in the transmitted 
beam. This result is in agreement with the theoretical predictions of Hoff- 
man, Laslett, Smith and Haber[4]. As many synchrotrons are designed with 
bare phase advance per cell near 90 degrees to minimize the necessary aper- 
ture in the machine, it is reasonable to ask whether this effect is important 
for weaker intensity beams found in circular machines. In particular, this 
question was raised with regards to the Fermilab Booster, both in its present 
state and after the upgrade in injected energy from the linac[5]. 

We review below the standard derivation of rms transverse beam enve- 
lope equation, and extend it to include the effects of design orbit curvature, 
momentum spread and dispersion. The envelope equation obtained is then 
analyzed for its stability properties under perturbation. This technique is 
used to examine existing and proposed machines - the SSC Low Energy 
Booster, the Fermilab Booster, and the TRIUMF Kaon Factory Booster - 
using their nominal lattices, intensities, emittances and momentum spreads, 
to determine possible problems with envelope instability in these devices. 
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The Envelope Equation 

The first envelope equations for describing beam propagation including 
the effects of the repulsive space charge self-forces were derived by Kapchin- 
skij and Vladimirskij (K-V)[6] using a special distribution function (uni- 
formly distributed population on a three-dimensional hyper-ellipsoidal SW- 
face in four-dimensional transverse phase space) which yields a uniform spa- 
tial density distribution within the elliptical beam boundary. This uniform 
density distribution yields linear space charge forces, thus allowing a straight- 
forward extraction of equations for the evolution of the beam envelope in a 
focusing channel, 

2 Q a” + K(t)a = 3 + - 
a+b 

for the horizontal beam size a, and 

(1) 

b” - K(z)b = $ + sb 

for the vertical. beam size b, where the focusing strength K = (E’B/&)(Bp)-l 
is positive for a horizontally focusing magnetic quadrupole, cz,# is the total 
horizontal/vertical emittame, taken by convention to be four times the rms 
emittance, and Q = 41/(1&r3) with 10 N 31 MA for protons. 

In order to avoid use of unphysical K-V distribution function, Sacherer 
generalized this treatment by concentrating on the evolution of the rms 
envelopes[‘l]. This approach is equivalent to following the second moments 
of the Vlasov equation for the four-dimensional transverse phase space of the 
beam. Assuming no z-y coupling, the second moments in the (z,p.) plane, 
where p. z z’, satisfy the following equations: 

&i’ = 22p, 
- 

zg = 2ph+Z 
a’ P = 2p.p:. 

(3) 

(4) 

(5) 

Analogous equations apply in the (y,pv) plane. Following Sacherer, we for- 
mally divide the force term pk c Fa/p2rmc” into a linear component due to 
the focusing elements and a part due to the space charge self-force 3*. Eqs. 
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3- 5 thus become 

2’ = azp. (6) 

it& = -K(z)2 + 23, + 2 (7) 
a’ P zz -2K(z)zp, + 2p,F,. (8) 

The term p.F= is related to emittance growth, and can be ignored if one 
assumes that the rms emittance 

ET,, = 432 - (q&)2 

is either a constant or that its z dependence is a known function. If, in 
addition, one assumes elliptical symmetry for the beam spatial density, the 

term x depends only on the rms beam dimensions X 3 0 and y E 0, 

where we redefine Q -a Q/4 = 1/(1@7”), In this way the hierarchy of 
moment equations is closed. With the additional resealing of E -+ e/4 = E,~#, 
the rms envelope equations, derived by differentiation of Eq. 6 and use of Eqs. 
7 and 9 (along with the equivalent expressions for y), can be written in form 
identical to the K-V equation, 

and 

a G A!.- X” + K(t)X = 5 + x + Y’ 

2 
% & y” - K(z)Y = y3 + x + y 

All envelopes and emittances in these equations are now rms quantities; the 
K-V equations in rms form are contained in Eqs. 11 - 12 as a special case. 
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Envelope Instability 

Solutions to Eqs. 11 - 12 must generally be found by numerical methods. 
In the case of periodic focusing structures, application of periodic boundary 
conditions to these equations gives the matched solution for the rms beam 
envelopes. Beams will always have slight mismatches to the lattice, however, 
and the question remains as to whether the deviations from the matched 
solutions are stable. To answer this concern, a perturbation analysis is per- 
formed, which entails writing the perturbed envelope equations obtained by 
first order Taylor expansion about the matched solutions. The eigenvalues 
of this system of linear equations are then examined to see if they indicate 
instability by moving off of the unit circle on the complex plane. These 
instabilities occur when two eigenvalues collide on the unit circle. If they 
collide at 180 degrees (on the real axis) then this is a half-integer resonance 
between the perturbed envelope mode and the focusing structure. This case 
is a termed “parametric” resonance. If both pairs of eigenvalues collide off 
the real axis, then this is a “confluent” resonance between the two envelope 
frequencies. 

In the previously considered example of a symmetric FODO lattice, the 
resonances are mainly confluent[8]. Necessary conditions for envelope insta- 
bility in this case are (i) bare phase advance per cell r0 > 90 degrees, and 
(ii) depressed phase advance per cell r < 90 degrees. In terms of design, 
therefore, it is advisable to choose a FODO lattice with ~0 < 90 degrees, 
or failing that to make the phase advance much larger than 90 degrees. In 
machines with small space charge tune depression, the only way to invite 
trouble with the envelope instability is to design for r0 just above 90 de- 
grees. This conclusion, which was reached for symmetric FODO lattices in 
linear transport lines, is partially born out in our analysis of the envelope 
instability in circular machines presented below. 



The Envelope Equation: Circular Machines 

The major changes t,o beam beha,vior in c,ircular machines which have 

relevance to deriving envelope equa,tions are due to curva~turr focusing. which 

generally serves to break the horizonta.i-vertical symmetry of lat,tice. and to 

the presence of momrntum dispersion. which causes t,hr horizont,al beam 

profile to expand. The curvature effects on thr horizontal motion merely add 

to the horizontal focusing strength due to the quadrupole fields while lea.ving 

the vertical focusing strength unchanged, 

K&$, KY=---K. (13) 

In addition, in circular machines the I and y phase a.dvancrs are are chosen 

t,o be different, to avoid coupling resonances. Thus the focusing strengths 

of t,he F and D lenses are usually different. These changes can be t.rivially 

incorpora,ted into the envelope equations. 

The inclusion of the effects of momentum dispersion are not ncarl~ as 

straightforward. and require careful trca~tment. The st,andard way of de- 

scribing off-momentum orbit,s in accelerators is to split the motion into a 

betatron component ~0 (the quantity we have simply termed T to t,his point) 

and a dispersion component ~(Ap,/p). Thus we now write. for t,hr purpose 

of exa.mining rms quantities 

AP z = zg-7/-. 
P 
AP 

Pz - ~~ Xb~rj--. 
P 

(14) 

(15) 

The equation of motion for the dispersion function is taken t.o be 

7” t K,(t)7 = ;. (16) 

This approach is only approxima,te in the presenre of space charge, which in- 

troduces coupling that prevents this simple decomposition of the description 

of the motion, We haw also ignored the chroma,tic nature of t,he focusing in 

this treatment. The rms horizontal beam width is ILOW~ using Eq. 14: 

A= = ,/x2 $~ lpcq,. (l’i) 
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where oP = (Ap/p)“. 
By repeating the above analysis on the evolution of second moments we 

can derive a new set of envelope equations for circular accelerators 

and 

1 2 
Es & X’+ [K(z) + -y - y$“lX = 3 + x + Y’ 

a 5 --!L Y”-qa)Y=3)3+X+y’ 

The left hand side of any of these expressions is equivalent to the single 
particle equations of motion summed in squares over all momenta. The right 
hand side contains the self-force term and the emittance term. The self-force 
term is obtained immediately from Sacherer’s results. The vertical emittance 
is of course unchanged, but the horizontal emittance now takes the functional 
form 

cf = I[1 + (?)l] + u;(xq’ - x’q)*. 

Use of this equation again implies that we are ignoring possible emittance 
growth arising from the final term in Eq. 8; in the absence of space charge 
(Q = 0) Eq. 20 is exact. 

This treatment obviously has a limited range of validity; the separability 
of motion into betatron and dispersion components is only approximate in 
the presence of space charge. We thus expect that our envelope equations 
are valid only in the limit of small tune shifts, which fortunately serves our 
present purposes well. 

Equations 18 and 19 are now used to provide the basis of a perturba- 
tion analysis for several example lattices of low energy booster proton syn- 
chrotrons at injection, but including the effect of the beam bunching (bunch- 
ing factor) on the peak current. This is often where the space charge tune 
shifts are most important in a circular accelerator chain. 



Envelope Instability in Circular Machines 

The perturbed envelope equations that are used to test for envelope insta- 
bility are, expanding Eqs. 18 and 19 about the matched solutions for (X, y), 

and 

6x”+ [K(z) + -j + ;g + 2 + @ +Qyp = 0, (21) 

2 
,Y” + [-K(z) + > + (x +&y)zl~Y = 0. 

Note that, in the spirit of Sacherer’s treatment, we do not perturb the terms 
inside the emittance expression. 

The method of analysis proceeds by converting Eqs. 18 and 19 to the 
equivalent system of first order differential equations and solving them nu- 
merically subject to the appropriate periodic boundary conditions. In our 
case we have employed a shooting method with a Runge-Kutta integration 
scheme. With the matched solutions for the given lattice, emittances, beam 
energy and peak current, we then solve for the eigenvalues of the system of 
first order equivalent to Eqs. 21 and 22. The rms phase advance per cell is 
calculated for each case by evaluating the phase integral over the length of 
the cell L, 

J 

L dt 
c= = E. - = E. 

0 x1 L” p&&j7 (23) 

with an analogous expression holding for gV. In the absence of space charge, 
this integral gives the bare betatron phase advance of the cell. On the other 
hand, in the absence of momentum spread, Eq. 23 gives the ~m8 betatron 
phase advance per cell. If both momentum spread and space charge are 
present, there is no obvious interpretation of Eq. 23, as it contains some 
information about the off-momentum orbits, coupled to the betatron orbits 
through space charge forces. 

We now move on to the analysis of several low energy synchrotron lattices, 
which will illustrate some interesting aspects of the envelope instability in 
these machines. The first example we take is that of the SSC Low Energy 
Booster (LEB) FODO lattice[O], which has an injection energy of 600 MeV, 
360 mA peak current, and normalized rms emittance 0.75 mm-mrad. The 
maximum p-function is 11.9 m and the maximum dispersion is TJ = 84 cm. 
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The bare phase advances per cell are a,a = 93.6 degrees and cr@ = 90.0 
degrees, and we can anticipate that this lattice may be susceptible to beam 
envelope instability. The instability growth rate is plotted along with the 
phase advances as a function of peak beam current in Fig. l(a) for the case 
of no momentum spread. We see that the instability can occur, somewhat 
surprisingly, without both Q, and c,, being depressed to less than 90 degrees. 
The onset of (confluent) envelope instability (CT= = 90.6 degrees) occurs at 
1120 mA, or approximately three times the design, which is a comfortable 
margin. 

Inclusion of the design energy spread of crP = 9.3x = lo@, however, 
causes the picture to change somewhat for the worse. This case is shown 
in Fig. l(b). The onset of the instability occurs at about 400 mA, which is 
quite close to the design value. This result can be explained by examining 
the space charge force term in the envelope equations. If os < 90” and 
there is no momentum spread, the quantity X + y is nearly constant, and 
the space charge force has little modulation. The increase in severity of the 
instability with momentum spread is due to the larger modulation of the 
space charge force brought about by the periodicity of the dispersion. The 
dispersion contribution to the beam width adds approximately in phase with 
the horizontal betatron contribution, introducing a strong periodic driving 
term to the envelope equations. 

In the Fermilab Booster,[lO] one can expect that the large bare tunes 
(Q,, = 102” and a.,, = 100.5”) would k eep the machine far from conditions 
which would result in envelope instability. This is indeed true for the case 
with no momentum spread, shown in Fig. 2(a). The normalized rms emit- 
tance is taken to be 1.66~ mm-mrad (10~ ‘Fermilab’ emittance) in both di- 
mensions, and the peak operating current is 560 mA, assuming N = 2.5 x lOi” 
protons/batch and the bunching factor si B = 0.25 at 200 MeV injection en- 
ergy. Instability onset occurs at approximately twice this current, assuming 
constant emittance. The calculation for momentum spread nr, = 1.5 x 10e3, 
displayed in Fig. 2(b), is again mcue pessimistic. The space charge force mod- 
ulation lowers the instability threshold current to less than 600 mA, which 
is right on the assumed maximum operating current. This parametric reso- 
nance has a large growth rate (- 15 percent/cell), which peaks at 1.2 A and 
then is joined by the other unstable mode above 1.45 A, generating a new 
large confluent resonant band at higher currents. 

It should be noted that the envelope equations can all be recast in a 
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dimensionless form which explicitly shows that the calculations presented 
here are dependent only on the ratio Q/E. Thus if the injection energy 
is raised while keeping the number of protons per batch and normalized 
emittance constant the threshold current rises as /3-y’. For the linac upgrade 
this factor is 1.75, which raises the threshold to over 1 A. 

The case of the TRIUMF Kaon Factory low energy booster looks inter- 
esting on the surface, as peak currents are very high and the initial vertical 
phase advance per cell is 93 degrees. On the other hand, the horizontal phase 
advance is far smaller, at oso = 78.4”. This large tune splitting makes the 
machine relatively insensitive to the envelope instability. Also, the horizon- 
tal betatron width is larger than the vertical width due tune and emittance 
differences (normalized rms t.0 = 23 mm-mrad and e.0 = 10.3 mm-mrad), 
and is much larger than the width due to dispersion. The cases without and 
with momentum spread in this machine are shown in Figs. 3(a) and 3(b), 
respectively. The momentum spread actually has a small stabilizing effect in 
the TRIUMF machine. The envelope instability in both cases has a thresh- 
old current at 14 A, which is well above the design peak current of about 2 
A. 

Conclusions 

This treatment of the envelope instability in circular machines has pointed 
to the possibility of problems near the nominal operating point of the Fer- 
milab and SSC low energy synchrotrons at injection. There is good news for 
each case: at Fermilab, the linac upgrade takes the threshold current up to 
an acceptably high level, and at the SSC the LEB is currently under redesign, 
with phase advance per cell near 113 degrees[ll]. This design should provide 
for a larger threshold current, although calculations should be performed to 
check this conclusion. 

In order to understand the potential harm that envelope instability can 
pose to circular machines better, it would be instructive to run some multi- 
particle tracking codes which include space charge self-consistently. These 
codes would be able to better include the effects of chromaticity (which may 
provide damping) and the effect of space charge on the dispersion function. 
Multi-particle tracking has been done by Machida[l2], for a variety of ma- 
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chines. These simulations display some unexplained emittance growth in the 
case of the SSC LEB. This effect could not have been due to an accurate 
calculation of envelope instability, however, as that would entail evaluating 
the space charge kick many times per focusing cell. This scheme could be 
easily implemented to observe the instability computationally, as the growth 
rate is high enough that one would only need track through a few tens of 
cells to see an effect. 

If one becomes convinced that the envelope instability may be a prob- 
lem in a machine, then observation of the instability becomes an important 
issue. This could be accomplished using the turn-by-turn beam profile mon- 
itor currently under development for use in the Fermilab Booster [13]. A 
beam which is envelope unstable, where the growth rate is smaller than a 
turn period, should display a growing oscillation in beam size when observed 
turn-by-turn. These oscillations should damp as the emittance grows due to 
phase space filamentation induced by the beam’s nonlinear self-fields. As the 
emittance grows the beam will become larger and the space charge tune shift 
will diminish, taking the system below the instability threshold. 
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Figure l(a). Phase advance and growth ratr per cell plotted against 

peak current, at injection energy, SSC LEB: no momentunj spread. 
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Figure l(b). Phase advance and gro~vth rat? per c,,ll plotted agairlst 
peak current. at injection energy: SSC LEB. up = 9.3 x 1~~. 
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